Human cytomegalovirus (HCMV) encodes four viral Fc-gamma receptors (vFcγRs) that counteract antibody-mediated activation in vitro , but their role in infection and pathogenesis is unknown. To examine the in vivo function of vFcγRs in animal hosts closely related to humans, we identified and characterized vFcγRs encoded by rhesus CMV (RhCMV). We demonstrate that Rh05, Rh152/151 and Rh173 represent the complete set of RhCMV vFcγRs, each displaying functional similarities to their respective HCMV orthologs with respect to antagonizing host FcγR activation in vitro . When RhCMV-naïve rhesus macaques were infected with vFcγR-deleted RhCMV, peak plasma viremia levels and anti-RhCMV antibody responses were comparable to wildtype infections. However, the duration of plasma viremia was significantly shortened in immunocompetent, but not in CD4+ T cell-depleted animals. Since vFcγRs were not required for superinfection, we conclude that vFcγRs delay control by virus-specific adaptive immune responses, particularly antibodies, during primary infection.