A span-based model for extracting overlapping PICO entities from RCT publications. Academic Article uri icon

Overview

abstract

  • OBJECTIVES: Extracting PICO (Populations, Interventions, Comparison, and Outcomes) entities is fundamental to evidence retrieval. We present a novel method, PICOX, to extract overlapping PICO entities. MATERIALS AND METHODS: PICOX first identifies entities by assessing whether a word marks the beginning or conclusion of an entity. Then, it uses a multi-label classifier to assign one or more PICO labels to a span candidate. PICOX was evaluated using one of the best-performing baselines, EBM-NLP, and three more datasets, ie, PICO-Corpus and RCT publications on Alzheimer's Disease or COVID-19, using entity-level precision, recall, and F1 scores. RESULTS: PICOX achieved superior precision, recall, and F1 scores across the board, with the micro F1 score improving from 45.05 to 50.87 (p ≪ .01). On the PICO-Corpus, PICOX obtained higher recall and F1 scores than the baseline and improved the micro recall score from 56.66 to 67.33. On the COVID-19 dataset, PICOX also outperformed the baseline and improved the micro F1 score from 77.10 to 80.32. On the AD dataset, PICOX demonstrated comparable F1 scores with higher precision when compared to the baseline. CONCLUSION: PICOX excels in identifying overlapping entities and consistently surpasses a leading baseline across multiple datasets. Ablation studies reveal that its data augmentation strategy effectively minimizes false positives and improves precision.

publication date

  • March 12, 2024

Research

keywords

  • Alzheimer Disease
  • COVID-19

Identity

Digital Object Identifier (DOI)

  • 10.1093/jamia/ocae065

PubMed ID

  • 38471120