A review of changes in vascular smooth muscle functions in hypertension: isolated tissue versus in vivo studies.
Review
Overview
abstract
The role of altered vascular smooth muscle function in the etiology of essential hypertension has been extensively studied by a number of investigators. The results obtained from in vivo studies do not always correlate with results from in vitro studies and it is not always apparent whether the results reflect differences related to hypertension or to the genetic background of the animal model. In vitro and perfused vascular bed studies in our laboratory have utilized the spontaneously hypertensive rat (SHR), the normotensive Wistar Kyoto rat (WKY), genetically related crossbred rats (F1, F2, and BC1), and also Dahl salt-sensitive (DS) and salt-resistant (DR) rats. The role of altered smooth muscle function in relation to the development of the elevated blood pressure (BP) of the SHR or DS rat was studied and emphasis was placed on determining the role of altered neuronal uptake1 (U1) in hypertensives in masking elevated postsynaptic sensitivity to noradrenaline. In addition, the relationship between postsynaptic sensitivity to cations and BP was assessed. Such studies have indicated that alterations in postsynaptic sensitivity, U1 activity, and sensitivity to cations are not entirely consistent with the etiology of hypertension in the SHR and DS rat but may simply reflect genetic strain differences between the hypertensive and normotensive animals.