Interaction of human plasma lecithin:cholesterol acyltransferase and venom phospholipase A2 with apolipoprotein A-I recombinants containing nonhydrolyzable diether phosphatidylcholines. Academic Article uri icon

Overview

abstract

  • Partially reassembled high density lipoproteins (R-HDL) composed of apolipoprotein A-I and nonhydrolyzable analogues of phosphatidylcholine have been prepared, and their physical properties and reactivities as substrates for lecithin: cholesterol acyltransferase and three phospholipases were tested. The stereo-chemical pairs L-DMPC-ether (1,2-O-ditetradecyl-sn-glycero-3-phosphorylcholine) and D-DMPC-ether (2,3-O-ditetradecyl-sn-glycero-1-phosphoryline) or L-DMPC (1,2-dimyristoyl-sn-glycero-3-phosphoryl-choline) and D-DMPC (2,3-dimyristoyl-sn-glycero-1-phosphorylcholine) have similar thermal properties. R-HDL composed of these four lipids also have similar thermal properties as well as lipid/protein ratios, molecular weights, and protein conformations. Vmax and apparent Km values for lecithin: cholesterol acyltransferase on R-HDL consisting of linear combinations of L-DMPC and D-DMPC, L-DMPC-ether, or D-DMPC-ether plus 6 mol % cholesterol were measured. For the ether lecithins, there was a linear increase in Vmax with percentage of the acyl donor, L-DMPC, in R-HDL; over the same range, there was no change in Km. A comparison with bee venom and Naja melanoleuca phospholipase A2 demonstrated that the venom enzymes have turnover numbers almost 3 orders of magnitude greater than has lecithin:cholesterol acyltransferase; the activity of the phospholipases was profoundly affected by the physical state of the lipid, whereas lecithin: cholesterol acyltransferase activity was not. The differences between these two types of enzymes, which cleave the same bonds of a phosphatidylcholine, are assigned to different catalytic mechanisms. These studies show that R-HDL containing sn-glycero-3-phosphorylcholines and sn-glycero-3-phosphorylcholine ethers have similar structure, properties, and affinities for phospholipolytic enzymes.

publication date

  • September 25, 1985

Research

keywords

  • Apolipoproteins A
  • Bee Venoms
  • Elapid Venoms
  • Phosphatidylcholine-Sterol O-Acyltransferase
  • Phosphatidylcholines
  • Phospholipases
  • Phospholipases A

Identity

Scopus Document Identifier

  • 0022235475

PubMed ID

  • 3930483

Additional Document Info

volume

  • 260

issue

  • 21