Assessment of dual time point protocols to produce parametric Ki images in FDG PET/CT: A virtual clinical study.
Academic Article
Overview
abstract
PURPOSE: This simulation study investigated the feasibility of generating Patlak Ki images using a dual time point (DTP-Ki) scan protocol involving two 3-min/bed routine static PET scans and, subsequently, assessed DTP-Ki performance for an optimal DTP scan time frame combination, against conventional Patlak Ki estimated from complete 0-93 min dynamic PET data. METHODS: ≥ RESULTS: High correlations (>0.9) were observed between DTP-Ki values from sPBIF and those from iIFs for all evaluated DTP protocols while the mean AUC difference between sPBIF and iIFs was less than 10%. The percentage difference of mean values between DTP-Ki from sPBIF and from iIFs was less than 1%. DTP Ki from sPBIF exhibited significantly higher correlation with gold standard Ki, in contrast to RI, across all 66 DTP protocols (p < 0.05 using the two-tailed t-test by Williams) with the highest correlation attained for the 50-53-min early + 90-93-min late scan time frames (optimal DTP protocol). CONCLUSION: Feasibility of generating Patlak Ki [18F] FDG images from an early and a late post injection 3-min/bed routine static scan using a population-based input function model was demonstrated and an optimal DTP scan protocol was determined. The results indicated high correlations between DTP-Ki and gold-standard Ki images that are significantly larger than those between RI and gold-standard Ki.