Identification, characterization, and structure of a tRNA splicing enzyme RNA 5'-OH kinase from the pathogenic fungi Mucorales.
Academic Article
Overview
abstract
Fungal Trl1 is an essential tRNA splicing enzyme composed of C-terminal cyclic phosphodiesterase and central polynucleotide kinase end-healing domains that convert the 2',3'-cyclic-PO4 and 5'-OH ends of tRNA exons into the 3'-OH,2'-PO4 and 5'-PO4 termini required for sealing by an N-terminal ATP-dependent ligase domain. Trifunctional Trl1 enzymes are present in most human fungal pathogens and are untapped targets for anti-fungal drug discovery. Mucorales species, deemed high priority human pathogens by WHO, elaborate a noncanonical tRNA splicing apparatus in which a stand-alone monofunctional RNA ligase enzyme joins 3'-OH,2'-PO4 and 5'-PO4 termini. Here we identify a stand-alone Mucor circinelloides polynucleotide kinase (MciKIN) and affirm its biological activity in tRNA splicing by genetic complementation in yeast. Recombinant MciKIN catalyzes magnesium-dependent phosphorylation of 5'-OH RNA and DNA ends in vitro. MciKIN displays a strong preference for GTP as the phosphate donor in the kinase reaction, a trait shared with the stand-alone RNA kinase homologs from Mucorales species Rhizopus azygosporus (RazKIN) and Lichtheimia corymbifera (LcoKIN) and with the kinase domains of fungal Trl1 enzymes. We report a 1.65 Å crystal structure of RazKIN in complex with GDP•Mg2+ that illuminates the basis for guanosine nucleotide specificity.