MALT1 protease inhibition restrains glioblastoma progression by reversing tumor-associated macrophage-dependent immunosuppression. uri icon

Overview

abstract

  • MALT1 protease is an intracellular signaling molecule that promotes tumor progression via cancer cell-intrinsic and cancer cell-extrinsic mechanisms. MALT1 has been mostly studied in lymphocytes, and little is known about its role in tumor-associated macrophages. Here, we show that MALT1 plays a key role in glioblastoma (GBM)-associated macrophages. Mechanistically, GBM tumor cells induce a MALT1-NF-κB signaling axis within macrophages, leading to macrophage migration and polarization toward an immunosuppressive phenotype. Inactivation of MALT1 protease promotes transcriptional reprogramming that reduces migration and restores a macrophage "M1-like" phenotype. Preclinical in vivo analysis shows that MALT1 inhibitor treatment results in increased immuno-reactivity of GBM-associated macrophages and reduced GBM tumor growth. Further, the addition of MALT1 inhibitor to temozolomide reduces immunosuppression in the tumor microenvironment, which may enhance the efficacy of this standard-of-care chemotherapeutic. Together, our findings suggest that MALT1 protease inhibition represents a promising macrophage-targeted immunotherapeutic strategy for the treatment of GBM.

publication date

  • September 27, 2024

Identity

PubMed Central ID

  • PMC11463364

Digital Object Identifier (DOI)

  • 10.1101/2024.09.26.614808

PubMed ID

  • 39386586