A network-based systems genetics framework identifies pathobiology and drug repurposing in Parkinson's disease.
Overview
abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder. However, current treatments are directed at symptoms and lack ability to slow or prevent disease progression. Large-scale genome-wide association studies (GWAS) have identified numerous genomic loci associated with PD, which may guide the development of disease-modifying treatments. We presented a systems genetics approach to identify potential risk genes and repurposable drugs for PD. First, we leveraged non-coding GWAS loci effects on multiple human brain-specific quantitative trait loci (xQTLs) under the protein-protein interactome (PPI) network. We then prioritized a set of PD likely risk genes (pdRGs) by integrating five types of molecular xQTLs: expression (eQTLs), protein (pQTLs), splicing (sQTLs), methylation (meQTLs), and histone acetylation (haQTLs). We also integrated network proximity-based drug repurposing and patient electronic health record (EHR) data observations to propose potential drug candidates for PD treatments. We identified 175 pdRGs from QTL-regulated GWAS findings, such as SNCA , CTSB , LRRK2, DGKQ , CD38 and CD44 . Multi-omics data validation revealed that the identified pdRGs are likely to be druggable targets, differentially expressed in multiple cell types and impact both the parkin ubiquitin-proteasome and alpha-synuclein (a-syn) pathways. Based on the network proximity-based drug repurposing followed by EHR data validation, we identified usage of simvastatin as being significantly associated with reduced incidence of PD (fall outcome: hazard ratio (HR) = 0.91, 95% confidence interval (CI): 0.87-0.94; for dementia outcome: HR = 0.88, 95% CI: 0.86-0.89), after adjusting for 267 covariates. Our network-based systems genetics framework identifies potential risk genes and repurposable drugs for PD and other neurodegenerative diseases if broadly applied.