Molecular design of a therapeutic LSD analogue with reduced hallucinogenic potential. Academic Article uri icon

Overview

abstract

  • Decreased dendritic spine density in the cortex is a key pathological feature of neuropsychiatric diseases including depression, addiction, and schizophrenia (SCZ). Psychedelics possess a remarkable ability to promote cortical neuron growth and increase spine density; however, these compounds are contraindicated for patients with SCZ or a family history of psychosis. Here, we report the molecular design and de novo total synthesis of (+)-JRT, a structural analogue of lysergic acid diethylamide (LSD) with lower hallucinogenic potential and potent neuroplasticity-promoting properties. In addition to promoting spinogenesis in the cortex, (+)-JRT produces therapeutic effects in behavioral assays relevant to depression and cognition without exacerbating behavioral and gene expression signatures relevant to psychosis. This work underscores the potential of nonhallucinogenic psychoplastogens for treating diseases where the use of psychedelics presents significant safety concerns.

publication date

  • April 14, 2025

Research

keywords

  • Drug Design
  • Hallucinogens
  • Lysergic Acid Diethylamide

Identity

Digital Object Identifier (DOI)

  • 10.1073/pnas.2416106122

PubMed ID

  • 40228113

Additional Document Info

volume

  • 122

issue

  • 16