Niche-specific dermal macrophage loss promotes skin capillary ageing.
Academic Article
Overview
abstract
All mammalian organs depend on resident macrophage populations to coordinate repair and facilitate tissue-specific functions1-3. Functionally distinct macrophage populations reside in discrete tissue niches and are replenished through a combination of local proliferation and monocyte recruitment4,5. Declines in macrophage abundance and function have been linked to age-associated pathologies, including atherosclerosis, cancer and neurodegeneration6-8. However, the mechanisms that coordinate macrophage organization and replenishment within ageing tissues remain largely unclear. Here we show that capillary-associated macrophages (CAMs) are selectively lost over time, contributing to impaired vascular repair and reduced tissue perfusion in older mice. To investigate resident macrophage behaviour in vivo, we used intravital two-photon microscopy in live mice to non-invasively image the skin capillary plexus, a spatially well-defined vascular niche that undergoes rarefication and functional decline with age. We find that CAMs are lost at a rate exceeding capillary loss, resulting in macrophage-deficient vascular niches in both mice and humans. CAM phagocytic activity was locally required to repair obstructed capillary blood flow, leaving macrophage-deficient niches selectively vulnerable under homeostatic and injury conditions. Our study demonstrates that homeostatic renewal of resident macrophages is less precisely regulated than previously suggested9-11. Specifically, neighbouring macrophages do not proliferate or reorganize to compensate for macrophage loss without injury or increased growth factors, such as colony-stimulating factor 1 (CSF1). These limitations in macrophage renewal may represent early and targetable contributors to tissue ageing.