Isolation and biochemical characterization of nuclei from chick embryo liver. Academic Article uri icon

Overview

abstract

  • A procedure is described for the isolation of enzymatically active nuclei from chick embryo liver. It consists of the homogenization of the pooled tissue in 0.32 M sucrose-3 mM MgCl(2) followed by a slow centrifugation. The resulting nuclear pellet is then purified further in a discontinuous density gradient composed of sucrose solutions containing Mg(2+) ions, the lower portion of the gradient being 2.2 M sucrose-1 mM MgCl(2). Based on DNA recovery, the nuclear fraction isolated by the procedure described contained an average of 62% of the nuclei in the original filtered homogenate. Light and electron microscope examinations showed that 90% of the isolated nuclei were derived from hepatocytes. They appeared intact with well preserved nucleoplasmic and nucleolar components, nuclear envelope, and pores. The isolated nuclei were quite pure, having a very low level of cytoplasmic contamination as indicated by cytoplasmic enzyme marker activities and electron microscope studies. The nuclear fraction consisted of 19.9% DNA, 6.2% RNA, 74% protein, the average RNA/DNA ratio being 0.32. Biosynthetic activities of the two nuclear enzymes NAD-pyrophosphorylase and DNA-dependent RNA polymerase were preserved. The specific activities of these enzymes were: NAD-pyrophosphorylase, 0.049 micromoles nicotinamide adenine dinucleotide (NAD) synthesized/min per mg protein; Mg(2+) activated RNA polymerase, 4.3 micromicromoles UMP-2-C(14) incorporated into RNA/microg DNA per 10 min; and Mn(2+)-(NH(4))(2)SO(4) activated RNA-polymerase, 136 micromicromoles UMP-2-C(14) incorporated into RNA/microg DNA per 45 min.

publication date

  • August 1, 1971

Research

keywords

  • Cell Nucleus
  • Liver

Identity

PubMed Central ID

  • PMC2108274

Scopus Document Identifier

  • 0015108674

PubMed ID

  • 4398788

Additional Document Info

volume

  • 50

issue

  • 2