Nonlinear spatial summation and the contrast gain control of cat retinal ganglion cells. Academic Article uri icon

Overview

abstract

  • 1. We studied how responses to visual stimuli at spatially separated locations were combined by cat retinal ganglion cells. 2. The temporal signal which modulated the stimuli was a sum of sinusoids. Fourier analysis of the ganglion cell impulse train yielded first order responses at the modulation frequencies, and second order responses at sums and differences of the input frequencies. 3. Spatial stimuli were spots in the centre and periphery of the cell's receptive field. Four conditions of stimulation were used: centre alone, periphery alone, centre and periphery in phase, centre and periphery out of phase. 4. The effective first order response of the centre was defined as the response due to centre stimulation in the presence of periphery stimulation, but independent of the relative phases of the two regions. Likewise, the effective first order response of the periphery was defined as the response due to periphery in the presence of centre stimulation, but independent of the relative phases of the two regions. These effective responses may be calculated by addition and subtraction of the measured responses to the combined stimuli. 5. There was a consistent difference between the first order frequency kernal of the effective centre and the first order kernel of the centre alone. The amplitudes of the effective centre responses were diminished at low frequencies of modulation compared to the isolated centre responses. Also, the phase of the effective centre's response to high frequencies was advanced. Such non-linear interaction occurred in all ganglion cells, X or Y, but the effects were larger in Y cells. 6. In addition to spatially uniform stimuli in the periphery, spatial grating patterns were also used. These peripheral gratings affected the first order kernal of the centre even though the peripheral gratings produced no first order responses by themselves. 7. The temporal properties of the non-linear interaction of centre and periphery were probed by modulation in the periphery with single sinusoids. The most effective temporal frequencies for producing non-linear summation were: (a) 4-15 Hz when all the visual stimuli were spatially uniform, (b) 2-8 Hz when spatial grating patterns were used in the periphery. 8. The characteristics of non-linear spatial summation observed in these experiments are explained by the properties of the contrast gain control mechanism which we have previously postulated.

publication date

  • May 1, 1979

Research

keywords

  • Retina
  • Space Perception

Identity

PubMed Central ID

  • PMC1278829

Scopus Document Identifier

  • 0018657072

PubMed ID

  • 469742

Additional Document Info

volume

  • 290

issue

  • 2