Dynamics of lipid-protein interactions. Interaction of apolipoprotein A-II from human plasma high density lipoproteins with dimyristoylphosphatidylcholine. Academic Article uri icon

Overview

abstract

  • ApoA-II and dimyristoylphosphatidylcholine (DMPC) spontaneously associate to give three different complexes whose structures are determined by the initial reactant concentration and by the reaction temperature with respect to Tc (23.9 degrees C), the gel to liquid crystalline transition temperature of DMPC. At an initial lipid to protein ratio of 45/1, a single complex (2.29 x 10(5) daltons) is quantitatively formed at all temperatures between Tc - 4 degrees C and Tc + 6 degrees C. When the 45/1 complex is mixed with DMPC liposomes there is lipid exchange but no net transfer of lipid, so that the structure of the complex remains unaltered. At an initial molar ratio of 100 to 300:1, the reaction scheme is more complex. At 24 degrees C a 240/1 complex (1.5 x 10(6) daltons) is formed from a precursor 75/1 complex (3.43 x 10(5) daltons) if excess (approximately 300 mol/mol) lipid is present. The 75/1 complex exhibits lipid exchange in the presence of added DMPC liposomes at 24 degrees C, and both the 75/1 and the 240/1 complex can be converted to smaller protein-rich complexes in the presence of added apoA-II. These results suggest that the initial lipid/protein ratio and the physical state of a lipid or lipid . protein complex determines the composition and structure of the resulting complex and support the view that lipid-protein interactions are stronger than protein-protein or lipid-lipid interactions.

publication date

  • November 10, 1980

Research

keywords

  • Apolipoproteins
  • Phosphatidylcholines

Identity

Scopus Document Identifier

  • 0019163955

PubMed ID

  • 6776110

Additional Document Info

volume

  • 255

issue

  • 21