Leucine meal increases glutamine and total nitrogen release from forearm muscle. Academic Article uri icon

Overview

abstract

  • To assess the consequences of elevated branched chain amino acid levels on alanine, glutamine, and ammonia metabolism in muscle, L-leucine meals (14.7 g) were consumed by six normal postabsorptive individuals. Bilateral forearm studies were performed, and the dominant arm was subjected to 15 min of light exercise, using a calibrated dynamometer, beginning 45 min after the ingestion of the meal. Large uptakes of leucine were seen across both forearm muscle beds within 30 min of the meal. After exercise, blood flow in the dominant arm increased from 3.1 +/- 0.4 to 5.2 +/- 0.9 ml/100 ml forearm per minute (mean +/- SEM, P less than 0.005). Glutamine flux out of the dominant forearm increased threefold after the ingestion of the leucine meal and increased eightfold over base line after exercise. Less marked changes (significant only at 90 min) in the nonexercised, nondominant arm were also seen. Alanine flux out of the dominant forearm muscle bed increased modestly at 75 and 90 min. No significant change in ammonia flux across either forearm muscle bed was noted. Unexpectedly, large and significant net nitrogen loss from both forearm muscle beds was documented. Thus, following the ingestion of a leucine meal and light exercise, the primary means by which excess nitrogen is routed out of muscle is via glutamine formation and release with alanine and ammonia pathways playing relatively minor roles. More importantly, the ingestion of significant amounts of leucine by normal subjects, presumably in optimal nitrogen balance, results in a net loss of nitrogen from muscle.

publication date

  • December 1, 1981

Research

keywords

  • Glutamine
  • Leucine
  • Muscles
  • Nitrogen

Identity

PubMed Central ID

  • PMC370956

Scopus Document Identifier

  • 0019787843

PubMed ID

  • 7320199

Additional Document Info

volume

  • 68

issue

  • 6