In vivo antioxidant gene expression in human airway epithelium of normal individuals exposed to 100% O2.
Academic Article
Overview
abstract
Human bronchial epithelium is exquisitely sensitive to high O2 levels, with tracheobronchitis usually developing after 12 h of exposure to 100% O2. To evaluate whether this vulnerability results from inability of the bronchial epithelium to provide adequate antioxidant protection, we quantified antioxidant gene expression in bronchial epithelium of normal volunteers at baseline and after exposure to 100% O2 in vivo. After 14.8 +/- 0.2 h of 100% O2, 24 of 33 individuals had evidence of tracheobronchitis. Baseline gene expression of CuZn superoxide dismutase (SOD), MnSOD, and catalase in bronchial epithelium was very low (CuZnSOD 4.1 +/- 0.8 transcripts/cell, MnSOD 5.1 +/- 0.9, catalase 1.3 +/- 0.2), with control gamma-actin expression relatively abundant (50 +/- 6 transcripts/cell). Importantly, despite 100% O2 exposure sufficient to cause tracheobronchitis in most individuals, antioxidant mRNA transcripts/cell in bronchial epithelium did not increase (P > 0.5). Catalase activity in bronchial epithelium did not change after exposure to hyperoxia (P > 0.05). Total SOD activity increased mildly (P < 0.01) but not sufficiently to protect the epithelium. Together, the very low levels of expression of intracellular antioxidant enzymes and the inability to upregulate expression at the mRNA level with oxidant stress likely have a role in human airway epithelium susceptibility to hyperoxia.