Evidence for an age-related dysfunction in the antiproliferative response to transforming growth factor-beta in vascular smooth muscle cells. Academic Article uri icon

Overview

abstract

  • Previous studies have indicated that aged animals show an increased intimal hyperplasia after arterial injury. The present studies examined the hypothesis that the increased serum-free proliferation of aged smooth muscle cells (SMC), in vitro, was due to a loss of an antiproliferative signal, such as transforming growth factor-beta 1 (TGF-beta 1). Northern blot analysis of the mRNA derived from old (> 19 mo) or young (3-4 mo) rat aortic SMC indicated that both groups had an equivalent level of the 2.5 kB TGF-beta 1 message. Metabolic labeling with 35S-methionine and immunoprecipitation for TGF-beta 1 confirmed the de novo synthesis of TGF-beta 1 in rat SMC. Old and young SMC supernatants showed equal levels of active or latent (acid-activated) TGF-beta activity. Despite the similarities in the production of TGF-beta 1, old SMC were refractory to inhibition by TGF-beta 1, whereas young SMC were markedly inhibited (80%) by low levels of TGF-beta 1 (IC50 < 5 pg/ml). Binding studies at 4 degrees C indicated that old SMC exhibited reduced binding capacity for 125I-TGF-beta 1. Cross-linking studies confirmed that old SMC showed reduced binding of 125I-TGF-beta 1 to membrane sites corresponding to the high molecular weight type III receptor, as well as the 85-kDa type II and 65-kDa type I receptor. However, at 37 degrees C, old SMC degraded 125I-TGF-beta 1 more rapidly than young SMC. Combined, this data suggests that SMC derived from older animals are capable of normal production of TGF-beta 1 but fail to respond to the autocrine growth inhibitory effects of this agent, thereby leading to enhanced proliferation.

publication date

  • March 1, 1993

Research

keywords

  • Aging
  • Muscle, Smooth, Vascular
  • Transforming Growth Factor beta

Identity

PubMed Central ID

  • PMC300929

Scopus Document Identifier

  • 0027529271

PubMed ID

  • 8387357

Additional Document Info

volume

  • 4

issue

  • 3