Tetraphenylphosphonium chloride induced MR-visible lipid accumulation in a malignant human breast cell line.
Academic Article
Overview
abstract
The effect of the cationic lipophilic phosphonium salt tetraphenylphosphonium chloride (TPP) on a human malignant breast cell line, DU4475, was monitored with proton nuclear magnetic resonance (1H MRS). TPP caused a dose- and time- dependent increase in resonances arising from MR-visible lipid as measured by the CH2/CH3 ratio in the 1-dimensional 1H MR spectrum. Two-dimensional MRS identified increases in the glycerophosphocholine/lysine cross-peak ratio and corresponding decreases in the phosphocholine/lysine ratio in a dose- dependent fashion in TPP-treated cells. Lipid metabolic changes are discussed in the light of other MR experiments, and the data indicate that accumulation of MR-visible lipids may arise from the rearrangement of phospholipids accompanying mitochondrial destruction or from the catabolism of phospholipids associated with early events in the cytotoxic process.