Activation of protein kinase C (alpha, beta, and zeta) by insulin in 3T3/L1 cells. Transfection studies suggest a role for PKC-zeta in glucose transport. Academic Article uri icon

Overview

abstract

  • We presently studied (a) insulin effects on protein kinase C (PKC) and (b) effects of transfection-induced, stable expression of PKC isoforms on glucose transport in 3T3/L1 cells. In both fibroblasts and adipocytes, insulin provoked increases in membrane PKC enzyme activity and membrane levels of PKC-alpha and PKC-beta. However, insulin-induced increases in PKC enzyme activity were apparent in both non-down-regulated adipocytes and adipocytes that were down-regulated by overnight treatment with 5 microM phorbol ester, which largely depletes PKC-alpha, PKC-beta, and PKC-epsilon, but not PKC-zeta. Moreover, insulin provoked increases in the enzyme activity of immunoprecipitable PKC-zeta. In transfection studies, stable overexpression of wild-type or constitutively active forms of PKC-alpha, PKC-beta1, and PKC-beta2 failed to influence basal or insulin-stimulated glucose transport (2-deoxyglucose uptake) in fibroblasts and adipocytes, despite inhibiting insulin effects on glycogen synthesis. In contrast, stable overexpression of wild-type PKC-zeta increased, and a dominant-negative mutant form of PKC-zeta decreased, basal and insulin-stimulated glucose transport in fibroblasts and adipocytes. These findings suggested that: (a) insulin activates PKC-zeta, as well as PKC-alpha and beta; and (b) PKC-zeta is required for, and may contribute to, insulin effects on glucose transport in 3T3/L1 cells.

publication date

  • January 24, 1997

Research

keywords

  • Insulin
  • Isoenzymes
  • Monosaccharide Transport Proteins
  • Protein Kinase C

Identity

Scopus Document Identifier

  • 0031038052

PubMed ID

  • 8999972

Additional Document Info

volume

  • 272

issue

  • 4