Nuclear factor interleukin 6 motifs mediate tissue-specific gene transcription in hypoxia. Academic Article uri icon

Overview

abstract

  • Activation of transcription at the nuclear factor interleukin 6 (NF-IL-6) DNA binding motif modulates expression of multiple genes important in host adaptive and developmental mechanisms. Studies showing that hypoxia-induced transcription of IL-6 in cultured endothelial cells was due to transcriptional activation by the NF-IL-6 motif in the promoter (Yan, S.-F., Tritto, I., Pinsky, D., Liao, H., Huang, J., Fuller, G., Brett, J., May, L., and Stern, D. (1995) J. Biol. Chem. 270, 11463-11471) led us to prepare transgenic mice using 115- or 14-base pair regions of the promoter encompassing the NF-IL-6 site ligated to the lacZ reporter gene and the basal thymidine kinase promoter. On exposure to hypoxia or induction of ischemia, mice bearing either of the constructs showed prominent expression of the transgene in lung and cardiac vasculature and in the kidney but not in the liver (parenchyma or vasculature). In contrast, transgenic mice bearing a mutationally inactivated NF-IL-6 site showed no increase in transgene expression in hypoxia. Gel retardation assays revealed time-dependent, hypoxia-enhanced nuclear binding activity for the NF-IL-6 site in nuclear extracts of the heart, lung, and kidney but not in the liver; the hypoxia-enhanced band disappeared on addition of antibody to C/EBPbeta-NF-IL-6. Consistent with the specificity of hypoxia-mediated activation of C/EBPbeta-NF-IL-6, gel retardation assays showed no change in the intensity of the hypoxia-enhanced gel shift band in the presence of excess unlabeled oligonucleotide probes or antibodies related to other transcription factors, including NFkappaB, AP1, cAMP response element-binding protein, SP1, and hypoxia-inducible factor 1. These data indicate that the transcription factor NF-IL-6 is sensitive to environmental oxygen deprivation, and the tissue-specific pattern of gene expression suggests that local mechanisms have an important regulatory effect.

publication date

  • February 14, 1997

Research

keywords

  • DNA-Binding Proteins
  • Hypoxia
  • Nuclear Proteins
  • Transcription Factors
  • Transcription, Genetic

Identity

Scopus Document Identifier

  • 15144350613

PubMed ID

  • 9020146

Additional Document Info

volume

  • 272

issue

  • 7