Native and modified low density lipoproteins increase the functional expression of the macrophage class B scavenger receptor, CD36. Academic Article uri icon

Overview

abstract

  • The uptake of oxidized low density lipoprotein (OxLDL) by macrophages is a key event implicated in the initiation and development of atherosclerotic lesions. Two macrophage surface receptors, CD36 (a class B scavenger receptor) and the macrophage scavenger receptor (a class A scavenger receptor), have been identified as the major receptors that bind and internalize OxLDL. Expression of CD36 in monocyte/macrophages in tissue culture is dependent both on the differentiation state as well as exposure to soluble mediators (cytokines and growth factors). The regulatory mechanisms of this receptor in vivo are undetermined as is the role of lipoproteins themselves in modulating CD36 expression. We studied the effect of lipoproteins, native LDL and modified LDL (acetylated LDL (AcLDL) and OxLDL) on the expression of CD36 in J774 cells, a murine macrophage cell line. Exposure to lipoproteins resulted in a marked induction of CD36 mRNA expression (4-8-fold). Time course studies showed that maximum induction was observed 2 h after treatment with AcLDL and at 4 h with LDL and OxLDL. Increased expression of CD36 mRNA persisted for 24 h with each treatment group. Induction of CD36 mRNA expression was paralleled by an increase in CD36 protein as determined by Western blot with the greatest induction by OxLDL (4-fold). In the presence of actinomycin D, treatment of macrophages with LDL, AcLDL, or OxLDL did not affect CD36 mRNA stability, implying that CD36 mRNA was transcriptionally regulated by lipoproteins. To determine the mechanism(s) by which lipoproteins increased expression of CD36 we evaluated the effects of lipoprotein components on CD36 mRNA expression. ApoB 100 increased CD36 mRNA expression significantly, whereas phospholipid/cholesterol liposomes had less effect. Incubation of macrophages with bovine serum albumin or HDL reduced expression of CD36 mRNA in a dose-dependent manner. Finally, to evaluate the in vivo relevance of the induction of CD36 mRNA expression by lipoproteins, peritoneal macrophages were isolated from mice following intraperitoneal injection of lipoproteins. Macrophage expression of CD36 mRNA was significantly increased by LDL, AcLDL, or OxLDL in relation to mice infused with phosphate-buffered saline, with OxLDL causing the greatest induction (8-fold). This is the first demonstration that exposure to free and esterified lipids augments functional expression of the class B scavenger receptor, CD36. These data imply that lipoproteins can further contribute to foam cell development in atherosclerosis by up-regulating a major OxLDL receptor.

publication date

  • August 22, 1997

Research

keywords

  • CD36 Antigens
  • Lipoproteins, LDL
  • Macrophages, Peritoneal
  • Membrane Proteins
  • Receptors, Immunologic
  • Receptors, Lipoprotein

Identity

Scopus Document Identifier

  • 0030758289

PubMed ID

  • 9261189

Additional Document Info

volume

  • 272

issue

  • 34