Serine phosphorylation-dependent association of the band 4.1-related protein-tyrosine phosphatase PTPH1 with 14-3-3beta protein.
Academic Article
Overview
abstract
PTPH1 is a human protein-tyrosine phosphatase with homology to the band 4.1 superfamily of cytoskeletal-associated proteins. PTPH1 was found to associate with 14-3-3beta using a yeast two-hybrid screen, and its interaction could be reconstituted in vitro using recombinant proteins. Examination of the interaction between 14-3-3beta and various deletion mutants of PTPH1 by two-hybrid tests suggested that the integrity of the PTP is important for this binding. Although both PTPH1 and Raf-1 form complexes with 14-3-3beta, they appear to do so independently. Binding of 14-3-3beta to PTPH1 in vitro was abolished by pretreating PTPH1 with potato acid phosphatase and was greatly enhanced by pretreating with Cdc25C-associated protein kinase. Thus the association between PTPH1 and 14-3-3beta is phosphorylation-dependent. Two novel motifs RSLS359VE and RVDS853EP in PTPH1 were identified as major 14-3-3beta-binding sites, both of which are distinct from the consensus binding motif RSXSXP recently found in Raf-1. Mutation of Ser359 and Ser853 to alanine significantly reduced the association between 14-3-3beta and PTPH1. Furthermore, association of PTPH1 and 14-3-3beta was detected in several cell lines and was regulated in response to extracellular signals. These results raise the possibility that 14-3-3beta may function as an adaptor molecule in the regulation of PTPH1 and may provide a link between serine/threonine and tyrosine phosphorylation-dependent signaling pathways.