Antigen-dependent CD28 signaling selectively enhances survival and proliferation in genetically modified activated human primary T lymphocytes.
Academic Article
Overview
abstract
Most tumor cells function poorly as antigen-presenting cells in part because they do not express costimulatory molecules. To provide costimulation to T lymphocytes that recognize tumor cells, we constructed a CD28-like receptor specific for GD2, a ganglioside overexpressed on the surface of neuroblastoma, small-cell lung carcinoma, melanoma, and other human tumors. Recognition of GD2 was provided by a single-chain antibody derived from the GD2-specific monoclonal antibody 3G6. We demonstrate that the chimeric receptor 3G6-CD28 provides CD28 signaling upon specific recognition of the GD2 antigen on tumor cells. Human primary T lymphocytes retrovirally transduced with 3G6-CD28 secrete interleukin 2, survive proapoptotic culture conditions, and selectively undergo clonal expansion in the presence of an antiidiotypic antibody specific for 3G6-CD28. Polyclonal CD8(+) lymphocytes expressing 3G6-CD28 are selectively expanded when cultured with cells expressing allogeneic major histocompatibility complex class I together with GD2. Primary T cells given such an antigen-dependent survival advantage should be very useful to augment immune responses against tumor cells.