Phosphorylation of c-Crk II on the negative regulatory Tyr222 mediates nerve growth factor-induced cell spreading and morphogenesis. Academic Article uri icon

Overview

abstract

  • The Crk family of adaptor proteins participate in diverse signaling pathways that regulate growth factor-induced proliferation, anchorage-dependent DNA synthesis, and cytoskeletal reorganization, important for cell adhesion and motility. Using kidney epithelial 293T cells for transient co-transfection studies and the nerve growth factor (NGF)-responsive PC12 cell line as a model system for neuronal morphogenesis, we demonstrate that the non-receptor tyrosine kinase c-Abl is an intermediary for NGF-inducible c-Crk II phosphorylation on the negative regulatory Tyr(222). Transient expression of a c-Crk II Tyr(222) point mutant (c-Crk Y222F) in 293T cells induces hyperphosphorylation of paxillin on Tyr(31) and enhances complex formation between c-Crk Y222F and paxillin as well as c-Crk Y222F and c-Abl, suggesting that c-Crk II Tyr(222) phosphorylation induces both the dissociation of the Crk SH2 domain from paxillin and the Crk SH3 domain from c-Abl. Interestingly, examination of the early kinetics of NGF stimulation in PC12 cells showed that c-Crk II Tyr(222) phosphorylation preceded paxillin Tyr(31) phosphorylation, followed by a transient initial dissociation of the c-Crk II paxillin complex. PC12 cells overexpressing c-Crk Y222F manifested a defect in cellular adhesion and neuritogenesis that led to detachment of cells from the extracellular matrix, thus demonstrating the biological significance of c-Crk II tyrosine phosphorylation in NGF-dependent morphogenesis. Whereas previous studies have shown that Crk SH2 binding to paxillin is critical for cell adhesion and migration, our data show that the phosphorylation cycle of c-Crk II determines its dynamic interaction with paxillin, thereby regulating turnover of multiprotein complexes, a critical aspect of cytoskeletal plasticity and actin dynamics.

publication date

  • August 11, 2000

Research

keywords

  • Cytoskeletal Proteins
  • Nerve Growth Factor
  • Phosphoproteins
  • Proto-Oncogene Proteins
  • Tyrosine

Identity

Scopus Document Identifier

  • 0034637444

PubMed ID

  • 10825157

Additional Document Info

volume

  • 275

issue

  • 32