Cobalt stimulation of heme degradation in the liver. Dissociation of microsomal oxidation of heme from cytochrome P-450. Academic Article uri icon

Overview

abstract

  • The administration of cobalt to rats caused a marked increase in the oxidative degradation of heme (hematin, iron protoporphyrin-IX) BY HEPATIC MICROSOMAL ENZYMES. The onset of this enzyme stimulation was very rapid, beginning within 2 hours after injection of the metal and reaching its maximum in 16 to 24 hours. During the rapid phase of stimulation, i.e. the first 2 to 4 hours, when heme oxidation was 450% above control values, there was a significant decrease in microsomal oxidative N-demethylation activity and in microsomal oxidative Ndemethylation activity and in microsomal content of heme with an insignificant decrease in cytochrome P-450 content. Within 24 hours the oxidative activity of the microsomal electron transport chain for drugs was decreased to about 30% of the control. However, during the same period the oxidation of heme approached levels 800% above control. During this period there was a further decrease in the microsomal content of heme with a significant decrease in cytochrome P-450 content and an increase in the activity of delta-aminolevulinate synthetase. The activity of delta-aminolevulinate synthetase reached its maximum within 8 hours after cobalt treatment. Repeated injections (at 24-hour intervals) of cobalt were necessary to maintain these changes in microsomal enzyme activities since, after single injections of the metal, these parameters returned to normal within 72 hours. The inducing effect of cobalt on the oxidation of heme could be inhibited by the administration of actinomycin D and puromycin. Furthermore, this stimulatory effect could not be elicited by in vitro treatment of microsomes with cobalt nor could the effect be attributed to any soluble components of the cytoplasm. Cobalt protoporphyrin-IX was less effective than cobalt chloride in stimulating heme oxidation. 3-Amino-1, 2, 4-triazole did not enhance hepatic heme oxidation activity, while allylisopropylacetamide decreased this activity. The oxidative degradation of heme was found not to be cytochrome P-450 dependent since the highly increased levels of heme oxidation in microsomes from cobalt-treated animals could be retained despite the fact that the cytochrome P-450 content of such microsomes was decreased to spectrally undetectable amounts and drug oxidation was eliminated by treatment of the microsomes with 4 M urea. These findings exclude an obligatory role for cytochrome P-450 in the oxidation of heme compounds, although the possibility that this process is a heme-dependent oxidation is not ruled out.

publication date

  • June 10, 1975

Research

keywords

  • Cobalt
  • Cytochrome P-450 Enzyme System
  • Heme
  • Liver
  • Microsomes, Liver

Identity

Scopus Document Identifier

  • 0016838104

PubMed ID

  • 1126948

Additional Document Info

volume

  • 250

issue

  • 11