Interactions between fission yeast Cdk9, its cyclin partner Pch1, and mRNA capping enzyme Pct1 suggest an elongation checkpoint for mRNA quality control.
Academic Article
Overview
abstract
RNA polymerase II (pol II) is subject to an early elongation delay induced by negative factors Spt5/Spt4 and NELF, which is overcome by the positive factor P-TEFb (Cdk9/cyclin T), a protein kinase that phosphorylates the pol II C-terminal domain (CTD) and the transcription elongation factor Spt5. Although the rationale for this arrest and restart is unclear, recent studies suggest a connection to mRNA capping, which is coupled to transcription elongation via physical and functional interactions between the cap-forming enzymes, the CTD-PO(4), and Spt5. Here we identify a novel interaction between fission yeast RNA triphosphatase Pct1, the enzyme that initiates cap formation, and Schizosaccharomyces pombe Cdk9. The C-terminal segment of SpCdk9 comprises a Pct1-binding domain distinct from the N-terminal Cdk domain. We show that the Cdk domain interacts with S. pombe Pch1, a homolog of cyclin T, and that the purified recombinant SpCdk9/Pch1 heterodimer can phosphorylate both the pol II CTD and the C-terminal domain of S. pombe Spt5. We provide genetic evidence that SpCdk9 and Pch1 are functional orthologs of the Saccharomyces cerevisiae CTD kinase Bur1/Bur2, a putative yeast P-TEFb. Mutations of the kinase active site and the regulatory T-loop of SpCdk9 abolish its activity in vivo. Deleting the C-terminal domain of SpCdk9 causes a severe growth defect. We suggest a model whereby Spt5-induced arrest of early elongation ensures a temporal window for recruitment of the capping enzymes, which in turn attract Cdk9 to alleviate the arrest. This elongation checkpoint may avoid wasteful rounds of transcription of uncapped pre-mRNAs.