Microglia-derived pronerve growth factor promotes photoreceptor cell death via p75 neurotrophin receptor. Academic Article uri icon

Overview

abstract

  • Reports implicating microglia-derived nerve growth factor (NGF) during programmed cell death in the developing chick retina led us to investigate its possible role in degenerative retinal disease. Freshly isolated activated retinal microglia expressed high molecular weight forms of neurotrophins including that of nerve growth factor (NGF), brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4. Conditioned media from cultured retinal microglia (MGCM) consistently yielded a approximately 32-kDa NGF-reactive band when supplemented with bovine serum albumin (BSA) or protease inhibitors (PI); and promoted cell death that was suppressed by NGF immunodepletion in a mouse photoreceptor cell line (661w). The approximately 32 kDa protein was partially purified (MGCM/p32) and was highly immunoreactive with a polyclonal anti-pro-NGF antibody. Both MGCM/p32 and recombinant pro-NGF protein promoted cell death in 661w cultures. Increased levels of pro-NGF mRNA and protein were observed in the RCS rat model of retinal dystrophy. MGCM-mediated cell death was reversed by p75NTR antiserum in p75NTR(+)/trkA(-) 661w cells. Our study shows that a approximately 32 kDa pro-NGF protein released by activated retinal microglia promoted degeneration of cultured photoreceptor cells. Moreover, our study suggests that defective post-translational processing of NGF might be involved in photoreceptor cell loss in retinal dystrophy.

publication date

  • July 23, 2004

Research

keywords

  • Microglia
  • Nerve Growth Factor
  • Photoreceptor Cells
  • Receptor, Nerve Growth Factor

Identity

Scopus Document Identifier

  • 4744370909

PubMed ID

  • 15277529

Additional Document Info

volume

  • 279

issue

  • 40