Interactions of bacterial lipopolysaccharide with microtubule proteins. Academic Article uri icon

Overview

abstract

  • Bacterial LPS is a potent stimulator of immune cells, but its mechanisms are unknown. A possible role for microtubules in LPS actions has been indicated by previous findings that the microtubule-active agent, taxol, can mimic some effects of LPS in macrophages from normal strains of mice, but not from genetically LPS-hyporesponsive strains. In this report we demonstrate that isolated microtubules from mouse brain can bind LPS in vitro. LPS and tubulin coeluted through a gel filtration column, and LPS was cross-linked to microtubule proteins with an iodinatable, photoreactive agent, sulfosuccinimidyl 2-(p-azidosalicylamido) ethyl-1,3'-dithiopropionate. beta-Tubulin and microtubule-associated protein-2 (MAP), a predominant MAP in the brain, bound LPS specifically. Cross-linking was inhibited by an excess of unlabeled LPS or partially by unlabeled lipid A, but not by 2 M NaCl. Under the same conditions, neither myosin nor soybean trypsin inhibitor was labeled by the photoaffinity LPS probe, nor did these proteins compete for binding of LPS to beta-tubulin. These findings support the hypothesis that the microtubule network could be an intracellular target for LPS, and suggest further that a beta-tubulin-associated MAP could have an important role in LPS actions.

publication date

  • May 1, 1992

Research

keywords

  • Lipopolysaccharides
  • Microtubule Proteins

Identity

Scopus Document Identifier

  • 0026591596

PubMed ID

  • 1573273

Additional Document Info

volume

  • 148

issue

  • 9