Quantifying similarity and dissimilarity of spike trains is an important requisite for understanding neural codes. Spike metrics constitute a class of approaches to this problem. In contrast to most signal-processing methods, spike metrics operate on time series of all-or-none events, and are, thus, particularly appropriate for extracellularly recorded neural signals. The spike metric approach can be extended to multineuronal recordings, mitigating the 'curse of dimensionality' typically associated with analyses of multivariate data. Spike metrics have been usefully applied to the analysis of neural coding in a variety of systems, including vision, audition, olfaction, taste and electric sense.