Glucocorticoid-induced TNF receptor family related gene activation overcomes tolerance/ignorance to melanoma differentiation antigens and enhances antitumor immunity.
Academic Article
Overview
abstract
Glucocorticoid-induced TNF receptor family related protein (GITR) is present on many different cell types. Previous studies have shown that in vivo administration of an anti-GITR agonist mAb (DTA-1) inhibits regulatory T cells (Treg)-dependent suppression and enhances T cell responses. In this study, we show that administration of DTA-1 induces >85% tumor rejection in mice challenged with B16 melanoma. Rejection requires CD4+, CD8+, and NK1.1+ cells and is dependent on IFN-gamma and Fas ligand and independent of perforin. Depletion of Treg via anti-CD25 treatment does not induce B16 rejection, whereas 100% of the mice depleted of CD25+ cells and treated with DTA-1 reject tumors, indicating a predominant role of GITR on effector T cell costimulation rather than on Treg modulation. T cells isolated from DTA-1-treated mice challenged with B16 are specific against B16 and several melanoma differentiation Ags. These mice develop memory against B16, and a small proportion of them develop mild hypopigmentation. Consistent with previous studies showing that GITR stimulation increases Treg proliferation in vitro, we found in our model that GITR stimulation expanded the absolute number of FoxP3+ cells in vivo. Thus, we conclude that overall, GITR stimulation overcomes self-tolerance/ignorance and enhances T cell-mediated antitumor activity with minimal autoimmunity.