Adjuvanticity of plasmid DNA encoding cytokines fused to immunoglobulin Fc domains. Academic Article uri icon

Overview

abstract

  • PURPOSE: Plasmid DNAs encoding cytokines enhance immune responses to vaccination in models of infectious diseases and cancer. We compared DNA adjuvants for their ability to enhance immunity against a poorly immunogenic self-antigen expressed by cancer. EXPERIMENTAL DESIGN: DNAs encoding cytokines that affect T cells [interleukin (IL)-2, IL-12, IL-15, IL-18, IL-21, and the chemokine CCL21] and antigen-presenting cells [granulocyte macrophage colony-stimulating factor (GM-CSF)] were compared in mouse models as adjuvants to enhance CD8+ T-cell responses and tumor immunity. A DNA vaccine against a self-antigen, gp100, expressed by melanoma was used in combination with DNA encoding cytokines and cytokines fused to the Fc domain of mouse IgG1 (Ig). RESULTS: We found that (a) cytokine DNAs generally increased CD8+ T-cell responses against gp100; (b) ligation to Fc domains further enhanced T-cell responses; (c) adjuvant effects were sensitive to timing of DNA injection; (d) the most efficacious individual adjuvants for improving tumor-free survival were IL-12/Ig, IL-15/Ig, IL-21/Ig, GM-CSF/Ig, and CCL21; and (e) combinations of IL-2/Ig+IL-12/Ig, IL-2/Ig+IL-15/Ig, IL-12/Ig+IL-15/Ig, and IL-12/Ig+IL-21/Ig were most active; and (f) increased adjuvanticity of cytokine/Ig fusion DNAs was not related to higher tissue levels or greater stability. CONCLUSIONS: These observations support the potential of cytokine DNA adjuvants for immunization against self-antigens expressed by cancer, the importance of timing, and the enhancement of immune responses by Fc domains through mechanisms unrelated to increased half-life.

publication date

  • September 15, 2006

Research

keywords

  • Adjuvants, Immunologic
  • Cytokines
  • Immunotherapy, Active
  • Neoplasms
  • Vaccines, DNA

Identity

Scopus Document Identifier

  • 33749350789

PubMed ID

  • 17000687

Additional Document Info

volume

  • 12

issue

  • 18