Increased levels of gamma-glutamylamines in Huntington disease CSF. Academic Article uri icon

Overview

abstract

  • Transglutaminases (TGases) catalyze several reactions with protein substrates, including formation of gamma-glutamyl-epsilon-lysine cross-links and gamma-glutamylpolyamine residues. The resulting gamma-glutamylamines are excised intact during proteolysis. TGase activity is altered in several diseases, highlighting the importance of in situ enzymatic determinations. Previous work showed that TGase activity (as measured by an in vitro assay) and free gamma-glutamyl-epsilon-lysine levels are elevated in Huntington disease (HD) and that gamma-glutamyl-epsilon-lysine is increased in HD CSF. Although free gamma-glutamyl-epsilon-lysine was used in these studies as an index of in situ TGase activity, gamma-glutamylpolyamines may also be diagnostic. We have devised methods for the simultaneous determination of four gamma-glutamylamines in CSF: gamma-glutamyl-epsilon-lysine, gamma-glutamylspermidine, gamma-glutamylputrescine, and bis-gamma-glutamylputrescine and showed that all are present in normal human CSF at concentrations of approximately 150, 670, 40, and 240 nM, respectively. The high gamma-glutamylspermidine/gamma-glutamylputrescine and gamma-glutamylspermidine/bis-gamma-glutamylputrescine ratios presumably reflect in part the large spermidine to putrescine mole ratio in human brain. We also showed that all four gamma-glutamylamines are elevated in HD CSF. Our findings support the hypotheses that (i) gamma-glutamylpolyamines are reflective of TGase activity in human brain, (ii) polyamination is an important post-translational modification of brain proteins, and (iii) TGase-catalyzed modification of proteins is increased in HD brain.

publication date

  • July 1, 2008

Research

keywords

  • Biogenic Polyamines
  • Brain
  • Glutamine
  • Huntington Disease
  • Transglutaminases

Identity

PubMed Central ID

  • PMC2574808

Scopus Document Identifier

  • 45449119171

Digital Object Identifier (DOI)

  • 10.1111/j.1471-4159.2008.05350.x

PubMed ID

  • 18422943

Additional Document Info

volume

  • 106

issue

  • 1