Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR-induced stop signal. Academic Article uri icon

Overview

abstract

  • Programmed death 1 (PD-1) is an inhibitory molecule expressed on activated T cells; however, the biological context in which PD-1 controls T cell tolerance remains unclear. Using two-photon laser-scanning microscopy, we show here that unlike naive or activated islet antigen-specific T cells, tolerized islet antigen-specific T cells moved freely and did not swarm around antigen-bearing dendritic cells (DCs) in pancreatic lymph nodes. Inhibition of T cell antigen receptor (TCR)-driven stop signals depended on continued interactions between PD-1 and its ligand, PD-L1, as antibody blockade of PD-1 or PD-L1 resulted in lower T cell motility, enhanced T cell-DC contacts and caused autoimmune diabetes. Blockade of the immunomodulatory receptor CTLA-4 did not alter T cell motility or abrogate tolerance. Thus, PD-1-PD-L1 interactions maintain peripheral tolerance by mechanisms fundamentally distinct from those of CTLA-4.

publication date

  • September 27, 2009

Research

keywords

  • Antigens, Surface
  • Apoptosis Regulatory Proteins
  • B7-1 Antigen
  • Immune Tolerance
  • Membrane Glycoproteins
  • Peptides
  • Receptors, Antigen, T-Cell
  • Signal Transduction

Identity

PubMed Central ID

  • PMC2778301

Scopus Document Identifier

  • 70350433514

Digital Object Identifier (DOI)

  • 10.1038/ni.1790

PubMed ID

  • 19783989

Additional Document Info

volume

  • 10

issue

  • 11