Inhibition of p53 by adenovirus type 12 E1B-55K deregulates cell cycle control and sensitizes tumor cells to genotoxic agents.
Academic Article
Overview
abstract
Adenovirus E1B-55K represses p53-mediated transcription. However, the phenotypic consequence of p53 inhibition by E1B-55K for cell cycle regulation and drug sensitivity in tumor cells has not been examined. In HCT116 cells with constitutive E1B-55K expression, the activation of p53 target genes such as the p21, Mdm2, and Puma genes was attenuated, despite markedly elevated p53 protein levels. HCT116 cells with E1B-55K expression displayed a cell cycle profile similar to that of the isogenic HCT116p53(-/-) cells, including unhindered S-phase entry despite DNA damage. Surprisingly, E1B-55K-expressing cells were more sensitive to drug treatment than parental cells. Compared to HCT116 cells, HCT116p53(-/-) cells were more susceptible to both doxorubicin and etoposide, and E1B-55K expression had no effects on drug treatment. E1B-55K expression increased the rate of cell proliferation in HCT116 but not in HCT116p53(-/-) cells. Thus, deregulation of p53-mediated cell cycle control by E1B-55K probably underlies sensitization of HCT116 cells to anticancer drugs. Consistently, E1B-55K expression in A549, A172, and HepG2 cells, all containing wild-type (wt) p53, also enhanced etoposide-induced cytotoxicity, whereas in p53-null H1299 cells, E1B-55K had no effects. We generated several E1B-55K mutants with mutations at positions occupied by the conserved Phe/Trp/His residues. Most of these mutants showed no or reduced binding to p53, although some of them could still stabilize p53, suggesting that binding might not be essential for E1B-55K-induced p53 stabilization. Despite heightened p53 protein levels in cells expressing certain E1B-55K mutants, p53 activity was largely suppressed. Furthermore, most of these E1B-55K mutants could sensitize HCT116 cells to etoposide and doxorubicin. These results indicate that E1B-55K might have utility for enhancing chemotherapy.