Organization of mouse mammary tumor virus-specific DNA endogenous to BALB/c mice. Academic Article uri icon

Overview

abstract

  • We used restriction endonucleases to prepare physical maps of the mouse mammary tumor virus (MMTV)-specific DNA endogenous to the BALB/c mouse strain. The mapping was facilitated by the DNA transfer procedure, using complementary DNAs specific for the whole and for the 3' terminus of MMTV RNA to detect fragments containing viral sequences. The strategies used for the arrangement of fragments into physical maps included sequential digestions with two or three enzymes; preparative isolation of EcoRI fragments containing viral sequences; and comparisons of virus-specific fragments derived from the DNA of several mouse strains. Most of the MMTV-related DNA in the BALB/c genome is organized into two units (II and III) which strongly resemble proviruses acquired upon horizontal infection with milk-borne strains of MMTV and other retroviruses. These units contain approximately 6.0 x 10(6) Mr of apparently uninterrupted viral sequences, they bear redundant sequences totaling at least 700 to 800 base pairs at their termini, and the terminal redundancies include sequences derived from the 3' end of MMTV RNA. Units II and III are closely related in that they share 12 of 14 recognition sites for endonucleases, but cellular sequences flanking units II and III are dissimilar by this criterion. The remainder of the MMTV-related DNA endogenous to BALB/c mice is found in a single subgenomic unit (unit I) with a complexity of ca. 2 x 10(6) Mr; the structure of this unit has not been further defined. These results support the hypotheses that endogenous proviruses have been acquired by infection of germinal tissues with MMTV. The physical maps are also useful for identifying the MMTV genomes endogenous to BALB/c mice in studies of the natural history of mammary tumorigenesis.

publication date

  • November 1, 1979

Research

keywords

  • DNA
  • DNA, Viral
  • Mammary Tumor Virus, Mouse
  • Mice, Inbred BALB C

Identity

PubMed Central ID

  • PMC353580

Scopus Document Identifier

  • 0018603594

PubMed ID

  • 228072

Additional Document Info

volume

  • 32

issue

  • 2