Discovery and structure activity relationship of small molecule inhibitors of toxic β-amyloid-42 fibril formation. Academic Article uri icon

Overview

abstract

  • Increasing evidence implicates Aβ peptides self-assembly and fibril formation as crucial events in the pathogenesis of Alzheimer disease. Thus, inhibiting Aβ aggregation, among others, has emerged as a potential therapeutic intervention for this disorder. Herein, we employed 3-aminopyrazole as a key fragment in our design of non-dye compounds capable of interacting with Aβ42 via a donor-acceptor-donor hydrogen bond pattern complementary to that of the β-sheet conformation of Aβ42. The initial design of the compounds was based on connecting two 3-aminopyrazole moieties via a linker to identify suitable scaffold molecules. Additional aryl substitutions on the two 3-aminopyrazole moieties were also explored to enhance π-π stacking/hydrophobic interactions with amino acids of Aβ42. The efficacy of these compounds on inhibiting Aβ fibril formation and toxicity in vitro was assessed using a combination of biophysical techniques and viability assays. Using structure activity relationship data from the in vitro assays, we identified compounds capable of preventing pathological self-assembly of Aβ42 leading to decreased cell toxicity.

publication date

  • August 13, 2012

Research

keywords

  • Amyloid beta-Peptides
  • Peptide Fragments
  • Pyrazoles

Identity

PubMed Central ID

  • PMC3464581

Scopus Document Identifier

  • 84867256112

Digital Object Identifier (DOI)

  • 10.1074/jbc.M112.357665

PubMed ID

  • 22891248

Additional Document Info

volume

  • 287

issue

  • 41