Caloric restriction reverses obesity-induced mammary gland inflammation in mice. Academic Article uri icon

Overview

abstract

  • Obesity is a risk factor for the development of hormone receptor-positive breast cancer in postmenopausal women. Estrogen synthesis is catalyzed by aromatase. Recently, we identified an obesity→inflammation→aromatase axis in mouse models and women. In mouse models of obesity, inflammatory foci characterized by crown-like structures (CLS) consisting of dead adipocytes encircled by macrophages were found in the mammary gland. CLS of the breast were found in most overweight and obese women. CLS were associated with adipocyte hypertrophy, activation of NF-κB, elevated levels of proinflammatory mediators and aromatase, and increased expression of the progesterone receptor (PR). Collectively, these findings provide a plausible explanation for the link between obesity, chronic inflammation, and postmenopausal breast cancer. Here, we investigated whether caloric restriction (CR) reversed the inflammatory state and related molecular changes in the mammary gland of obese mice. Obese ovariectomized C57BL/6J mice were subjected to 30% CR for 7 or 14 weeks. Findings in CR mice were compared with the results in mice fed a high-fat diet ad libitum or with control mice fed a low-fat diet. CR was associated with more than a 75% decrease in mammary CLS/cm(2). Reduced histologic inflammation following CR was associated with decreased adipocyte diameter and monocyte chemoattractant protein-1 (MCP-1) levels, reduced NF-κB binding activity, and normalization of levels of proinflammatory mediators, aromatase, and PR. In summary, obesity-related inflammation of the mammary gland and elevated aromatase and PR levels were reversed with CR. Our results provide a rationale for determining whether weight loss can reverse breast inflammation associated with obesity in women.

publication date

  • February 19, 2013

Research

keywords

  • Caloric Restriction
  • Mastitis
  • Obesity

Identity

PubMed Central ID

  • PMC3618560

Scopus Document Identifier

  • 84877263616

Digital Object Identifier (DOI)

  • 10.1158/1940-6207.CAPR-12-0467

PubMed ID

  • 23430756

Additional Document Info

volume

  • 6

issue

  • 4