Multifaceted activities of type I interferon are revealed by a receptor antagonist. Academic Article uri icon

Overview

abstract

  • Type I interferons (IFNs), including various IFN-α isoforms and IFN-β, are a family of homologous, multifunctional cytokines. IFNs activate different cellular responses by binding to a common receptor that consists of two subunits, IFNAR1 and IFNAR2. In addition to stimulating antiviral responses, they also inhibit cell proliferation and modulate other immune responses. We characterized various IFNs, including a mutant IFN-α2 (IFN-1ant) that bound tightly to IFNAR2 but had markedly reduced binding to IFNAR1. Whereas IFN-1ant stimulated antiviral activity in a range of cell lines, it failed to elicit immunomodulatory and antiproliferative activities. The antiviral activities of the various IFNs tested depended on a set of IFN-sensitive genes (the "robust" genes) that were controlled by canonical IFN response elements and responded at low concentrations of IFNs. Conversely, these elements were not found in the promoters of genes required for the antiproliferative responses of IFNs (the "tunable" genes). The extent of expression of tunable genes was cell type-specific and correlated with the magnitude of the antiproliferative effects of the various IFNs. Although IFN-1ant induced the expression of robust genes similarly in five different cell lines, its antiviral activity was virus- and cell type-specific. Our findings suggest that IFN-1ant may be a therapeutic candidate for the treatment of specific viral infections without inducing the immunomodulatory and antiproliferative functions of wild-type IFN.

publication date

  • May 27, 2014

Research

keywords

  • Gene Expression Regulation
  • Interferon Type I
  • Receptor, Interferon alpha-beta
  • Virus Diseases

Identity

PubMed Central ID

  • PMC4311876

Scopus Document Identifier

  • 84901945177

Digital Object Identifier (DOI)

  • 10.1126/scisignal.2004998

PubMed ID

  • 24866020

Additional Document Info

volume

  • 7

issue

  • 327