Ligand-activated BMP signaling inhibits cell differentiation and death to promote melanoma. Academic Article uri icon

Overview

abstract

  • Oncogenomic studies indicate that copy number variation (CNV) alters genes involved in tumor progression; however, identification of specific driver genes affected by CNV has been difficult, as these rearrangements are often contained in large chromosomal intervals among several bystander genes. Here, we addressed this problem and identified a CNV-targeted oncogene by performing comparative oncogenomics of human and zebrafish melanomas. We determined that the gene encoding growth differentiation factor 6 (GDF6), which is the ligand for the BMP family, is recurrently amplified and transcriptionally upregulated in melanoma. GDF6-induced BMP signaling maintained a trunk neural crest gene signature in melanomas. Additionally, GDF6 repressed the melanocyte differentiation gene MITF and the proapoptotic factor SOX9, thereby preventing differentiation, inhibiting cell death, and promoting tumor growth. GDF6 was specifically expressed in melanomas but not melanocytes. Moreover, GDF6 expression levels in melanomas were inversely correlated with patient survival. Our study has identified a fundamental role for GDF6 and BMP signaling in governing an embryonic cell gene signature to promote melanoma progression, thus providing potential opportunities for targeted therapy to treat GDF6-positive cancers.

publication date

  • December 4, 2017

Research

keywords

  • Bone Morphogenetic Proteins
  • Cell Differentiation
  • Growth Differentiation Factor 6
  • Melanoma
  • Neoplasm Proteins
  • Signal Transduction

Identity

PubMed Central ID

  • PMC5749509

Scopus Document Identifier

  • 85040161646

Digital Object Identifier (DOI)

  • 10.1172/JCI92513

PubMed ID

  • 29202482

Additional Document Info

volume

  • 128

issue

  • 1