Mandatory role of HMGA1 in human airway epithelial normal differentiation and post-injury regeneration. Academic Article uri icon

Overview

abstract

  • Due to high levels of expression in aggressive tumors, high mobility group AT-hook 1 (HMGA1) has recently attracted attention as a potential anti-tumor target. However, HMGA1 is also expressed in normal somatic progenitor cells, raising the question: how might systemic anti-HMGA1 therapies affect the structure and function of normal tissue differentiation? In the present study, RNA sequencing data demonstrated HMGA1 is highly expressed in human airway basal stem/progenitor cells (BC), but decreases with BC differentiation in air-liquid interface cultures (ALI). BC collected from nonsmokers, healthy smokers, and smokers with chronic obstructive pulmonary disease (COPD) displayed a range of HMGA1 expression levels. Low initial expression levels of HMGA1 in BC were associated with decreased ability to maintain a differentiated ALI epithelium. HMGA1 down-regulation in BC diminished BC proliferation, suppressed gene expression related to normal proliferation and differentiation, decreased airway epithelial resistance, suppressed junctional and cell polarity gene expression, and delayed wound closure of airway epithelium following injury. Furthermore, silencing of HMGA1 in airway BC in ALI increased the expression of genes associated with airway remodeling in COPD including squamous, epithelial-mesenchymal transition (EMT), and inflammatory genes. Together, the data suggests HMGA1 plays a central role in normal airway differentiation, and thus caution should be used to monitor airway epithelial structure and function in the context of systemic HMGA1-targeted therapies.

publication date

  • February 16, 2018

Identity

PubMed Central ID

  • PMC5865673

Scopus Document Identifier

  • 85042914335

Digital Object Identifier (DOI)

  • 10.18632/oncotarget.24511

PubMed ID

  • 29581847

Additional Document Info

volume

  • 9

issue

  • 18