Leveraging Bioorthogonal Click Chemistry to Improve 225Ac-Radioimmunotherapy of Pancreatic Ductal Adenocarcinoma. Academic Article uri icon

Overview

abstract

  • PURPOSE: Interest in targeted alpha-therapy has surged due to α-particles' high cytotoxicity. However, the widespread clinical use of this approach could be limited by on-/off-target toxicities. Here, we investigated the inverse electron-demand Diels-Alder ligation between an 225Ac-labeled tetrazine radioligand and a trans-cyclooctene-bearing anti-CA19.9 antibody (5B1) for pretargeted α-radioimmunotherapy (PRIT) of pancreatic ductal adenocarcinoma (PDAC). This alternative strategy is expected to reduce nonspecific toxicities as compared with conventional radioimmunotherapy (RIT).Experimental Design: A side-by-side comparison of 225Ac-PRIT and conventional RIT using a directly 225Ac-radiolabeled immunoconjugate evaluates the therapeutic efficacy and toxicity of both methodologies in PDAC murine models. RESULTS: A comparative biodistribution study of the PRIT versus RIT methodology underscored the improved pharmacokinetic properties (e.g., prolonged tumor uptake and increased tumor-to-tissue ratios) of the PRIT approach. Cerenkov imaging coupled to PRIT confirmed the in vivo biodistribution of 225Ac-radioimmunoconjugate but-importantly-further allowed for the ex vivo monitoring of 225Ac's radioactive daughters' redistribution. Human dosimetry was extrapolated from the mouse biodistribution and confirms the clinical translatability of 225Ac-PRIT. Furthermore, longitudinal therapy studies performed in subcutaneous and orthotopic PDAC models confirm the therapeutic efficacy of 225Ac-PRIT with the observation of prolonged median survival compared with control cohorts. Finally, a comparison with conventional RIT highlighted the potential of 225Ac-PRIT to reduce hematotoxicity while maintaining therapeutic effectiveness. CONCLUSIONS: The ability of 225Ac-PRIT to deliver a radiotherapeutic payload while simultaneously reducing the off-target toxicity normally associated with RIT suggests that the clinical translation of this approach will have a profound impact on PDAC therapy.

publication date

  • October 23, 2018

Research

keywords

  • Actinium
  • Click Chemistry
  • Immunoconjugates
  • Radiopharmaceuticals

Identity

PubMed Central ID

  • PMC6343144

Scopus Document Identifier

  • 85060010563

Digital Object Identifier (DOI)

  • 10.1158/1078-0432.CCR-18-1650

PubMed ID

  • 30352909

Additional Document Info

volume

  • 25

issue

  • 2