Predicting breast cancer response to neoadjuvant chemotherapy based on tumor vascular features in needle biopsies. Academic Article uri icon

Overview

abstract

  • In clinical breast cancer intervention, selection of the optimal treatment protocol based on predictive biomarkers remains an elusive goal. Here, we present a modeling tool to predict the likelihood of breast cancer response to neoadjuvant chemotherapy using patient specific tumor vasculature biomarkers. A semi-automated analysis was implemented and performed on 3990 histological images from 48 patients, with 10-208 images analyzed for each patient. We applied a histology-based model to resected primary breast cancer tumors (n = 30), and then evaluated a cohort of patients (n = 18) undergoing neoadjuvant chemotherapy, collecting pre- and post-treatment pathology specimens and MRI data. We found that core biopsy samples can be used with acceptable accuracy (r = 0.76) to determine histological parameters representative of the whole tissue region. Analysis of model histology parameters obtained from tumor vasculature measurements, specifically diffusion distance divided by radius of drug source (L/rb) and blood volume fraction (BVF), provides a statistically significant separation of patients obtaining a pathologic complete response (pCR) from those that do not (Student's t-test; P < 0.05). With this model, it is feasible to evaluate primary breast tumor vasculature biomarkers in a patient specific manner, thereby allowing a precision approach to breast cancer treatment.

publication date

  • March 5, 2019

Research

keywords

  • Antineoplastic Combined Chemotherapy Protocols
  • Blood Vessels
  • Breast Neoplasms
  • Carcinoma, Ductal, Breast
  • Neoadjuvant Therapy

Identity

PubMed Central ID

  • PMC6538356

Scopus Document Identifier

  • 85062416359

Digital Object Identifier (DOI)

  • 10.1172/jci.insight.126518

PubMed ID

  • 30835256

Additional Document Info

volume

  • 5

issue

  • 8