APOBEC mutagenesis, kataegis, chromothripsis in EGFR-mutant osimertinib-resistant lung adenocarcinomas. Academic Article uri icon

Overview

abstract

  • BACKGROUND: Studies of targeted therapy resistance in lung cancer have primarily focused on single-gene alterations. Based on prior work implicating apolipoprotein b mRNA-editing enzyme, catalytic polypeptide-like (APOBEC) mutagenesis in histological transformation of epidermal growth factor receptor (EGFR)-mutant lung cancers, we hypothesized that mutational signature analysis may help elucidate acquired resistance to targeted therapies. PATIENTS AND METHODS: APOBEC mutational signatures derived from an Food and Drug Administration-cleared multigene panel [Memorial Sloan Kettering Cancer Center Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT)] using the Signature Multivariate Analysis (SigMA) algorithm were validated against the gold standard of mutational signatures derived from whole-exome sequencing. Mutational signatures were decomposed in 3276 unique lung adenocarcinomas (LUADs), including 93 paired osimertinib-naïve and -resistant EGFR-mutant tumors. Associations between APOBEC and mechanisms of resistance to osimertinib were investigated. Whole-genome sequencing was carried out on available EGFR-mutant lung cancer samples (10 paired, 17 unpaired) to investigate large-scale genomic alterations potentially contributing to osimertinib resistance. RESULTS: APOBEC mutational signatures were more frequent in receptor tyrosine kinase (RTK)-driven lung cancers (EGFR, ALK, RET, and ROS1; 25%) compared to LUADs at large (20%, P < 0.001); across all subtypes, APOBEC mutational signatures were enriched in subclonal mutations (P < 0.001). In EGFR-mutant lung cancers, osimertinib-resistant samples more frequently displayed an APOBEC-dominant mutational signature compared to osimertinib-naïve samples (28% versus 14%, P = 0.03). Specifically, mutations detected in osimertinib-resistant tumors but not in pre-treatment samples significantly more frequently displayed an APOBEC-dominant mutational signature (44% versus 23%, P < 0.001). EGFR-mutant samples with APOBEC-dominant signatures had enrichment of large-scale genomic rearrangements (P = 0.01) and kataegis (P = 0.03) in areas of APOBEC mutagenesis. CONCLUSIONS: APOBEC mutational signatures are frequent in RTK-driven LUADs and increase under the selective pressure of osimertinib in EGFR-mutant lung cancer. APOBEC mutational signature enrichment in subclonal mutations, private mutations acquired after osimertinib treatment, and areas of large-scale genomic rearrangements highlights a potentially fundamental role for APOBEC mutagenesis in the development of resistance to targeted therapies, which may be potentially exploited to overcome such resistance.

publication date

  • September 9, 2022

Research

keywords

  • Adenocarcinoma of Lung
  • Chromothripsis
  • Lung Neoplasms

Identity

PubMed Central ID

  • PMC10360454

Scopus Document Identifier

  • 85140833575

Digital Object Identifier (DOI)

  • 10.1016/j.annonc.2022.09.151

PubMed ID

  • 36089134

Additional Document Info

volume

  • 33

issue

  • 12