Bidirectional regulation of motor circuits using magnetogenetic gene therapy. Academic Article uri icon

Overview

abstract

  • Here, we report a magnetogenetic system, based on a single anti-ferritin nanobody-TRPV1 receptor fusion protein, which regulated neuronal activity when exposed to magnetic fields. Adeno-associated virus (AAV)-mediated delivery of a floxed nanobody-TRPV1 into the striatum of adenosine-2a receptor-Cre drivers resulted in motor freezing when placed in a magnetic resonance imaging machine or adjacent to a transcranial magnetic stimulation device. Functional imaging and fiber photometry confirmed activation in response to magnetic fields. Expression of the same construct in the striatum of wild-type mice along with a second injection of an AAVretro expressing Cre into the globus pallidus led to similar circuit specificity and motor responses. Last, a mutation was generated to gate chloride and inhibit neuronal activity. Expression of this variant in the subthalamic nucleus in PitX2-Cre parkinsonian mice resulted in reduced c-fos expression and motor rotational behavior. These data demonstrate that magnetogenetic constructs can bidirectionally regulate activity of specific neuronal circuits noninvasively in vivo using clinically available devices.

publication date

  • October 9, 2024

Research

keywords

  • Dependovirus
  • Genetic Therapy

Identity

PubMed Central ID

  • PMC11463271

Digital Object Identifier (DOI)

  • 10.1126/sciadv.adp9150

PubMed ID

  • 39383230

Additional Document Info

volume

  • 10

issue

  • 41