Individual bioenergetic capacity as a potential source of resilience to Alzheimer's disease. Academic Article uri icon

Overview

abstract

  • Impaired glucose uptake in the brain is an early presymptomatic manifestation of Alzheimer's disease (AD), with symptom-free periods of varying duration that likely reflect individual differences in metabolic resilience. We propose a systemic "bioenergetic capacity", the individual ability to maintain energy homeostasis under pathological conditions. Using fasting serum acylcarnitine profiles from the AD Neuroimaging Initiative as a blood-based readout for this capacity, we identified subgroups with distinct clinical and biomarker presentations of AD. Our data suggests that improving beta-oxidation efficiency can decelerate bioenergetic aging and disease progression. The estimated treatment effects of targeting the bioenergetic capacity were comparable to those of recently approved anti-amyloid therapies, particularly in individuals with specific mitochondrial genotypes linked to succinylcarnitine metabolism. Taken together, our findings provide evidence that therapeutically enhancing bioenergetic health may reduce the risk of symptomatic AD. Furthermore, monitoring the bioenergetic capacity via blood acylcarnitine measurements can be achieved using existing clinical assays.

publication date

  • February 24, 2025

Research

keywords

  • Alzheimer Disease
  • Biomarkers
  • Carnitine
  • Energy Metabolism

Identity

PubMed Central ID

  • PMC11850607

Digital Object Identifier (DOI)

  • 10.1038/s41467-025-57032-0

PubMed ID

  • 39994231

Additional Document Info

volume

  • 16

issue

  • 1