A Comprehensive Atlas of Cell Type Density Patterns and Their Role in Brain Organization.
Overview
abstract
Cell-type composition across brain regions is a critical structural factor shaping both local and long-range brain circuits. Here, we employed single-cell resolution imaging of the mouse brain, combined with computational analyses, to map the distribution of 30 cell classes and types defined by gene marker expression in Cre recombinase-based genetic mouse models. This approach generated a comprehensive atlas of cell type-specific densities across the male and female brain, revealing (1) surprisingly broad sex differences in cells tagged by developmental cell-type markers, (2) shared cell type composition signatures among functionally related brain structures, and (3) close associations not only between specific cell types but also discrete cell type densities and anatomical regions and subregions. In summary, despite the relatively broad cell type classification enabled by the Cre mouse models, our findings highlight intricate relationships between brain cell type distribution and anatomical organization, associating distinct local cell densities with region-specific brain functions.