Subsynaptosomal calcium distribution during hypoxia and 3,4-diaminopyridine treatment.
Academic Article
Overview
abstract
Previous results demonstrate that hypoxia (low oxygen) diminishes calcium uptake by synaptosomes. The present studies examined the effects of low oxygen on calcium homeostasis in the digitonin-resistant (mitochondrial) and the digitonin-labile (nonmitochondrial) compartments of intact synaptosomes and their relation to altered membrane potentials. A 10-min hypoxic incubation in low-potassium media reduced total (-38.3%), mitochondrial (-43.3%), and nonmitochondrial (-27.8%) calcium uptake. In high-potassium media, low oxygen reduced mitochondrial (-41.2%) and total (-34.4%) uptake whereas nonmitochondrial (+ 6%) calcium uptake was essentially unaffected. A temporal analysis of nonmitochondrial calcium uptake revealed an initial depression (0-5 min) followed by a stimulation (5-10 min). Hypoxic-induced alterations in the subsynaptosomal distribution of calcium resembled those produced by uncouplers [FCCP (carbonylcyanide-p-trifluoromethoxyphenylhydrazone) or rotenone plus oligomycin]. 3,4-Diaminopyridine partially ameliorated the hypoxic- and FCCP-induced decreases in synaptosomal calcium uptake. Low oxygen reduced the total synaptosomal membrane potential (i.e., plasma plus mitochondrial membrane potential) as measured by an increased efflux of tetraphenylphosphonium ion. This hypoxic-induced efflux of tetraphenylphosphonium was slowed by pretreatment with 3,4-diaminopyridine. Thus, both drug and membrane potential studies suggest that hypoxic-induced alterations in the subcellular distribution of calcium may be due to an uncoupling mechanism and a collapse of the synaptosomal mitochondrial membrane potential.