Genetic mechanisms of resistance to targeted KRAS inhibition. uri icon

Overview

abstract

  • KRAS mutations are among the most prevalent oncogenic drivers in non-small cell lung cancer (NSCLC), yet the mechanisms of therapeutic resistance to KRAS inhibitors in these cancers remains poorly understood. Here, we deploy high-throughput CRISPR base editing screens to systematically map resistance mutations to three mechanistically distinct KRAS-targeted therapies, including KRAS-G12C(OFF) inhibitor (adagrasib), RAS(ON) G12C-selective tri-complex inhibitor (RMC-4998), and RAS(ON) multi-selective tri-complex inhibitor (RMC-7977). Using both a saturation Kras tiling approach and cancer-associated mutation library, we identify common and compound-selective second-site resistance mutations in Kras , as well as gain-of-function and loss-of-function variants across cancer-associated genes that rewire signaling networks in a context-dependent manner. Notably, we identify a recurrent missense mutation in capicua ( Cic ), that promotes resistance to RMC-7977 in vitro and in vivo. Moreover, we show that targeting NFκB signaling in CIC-mutant cells can resensitize them to RAS pathway inhibition and overcome resistance.

publication date

  • August 4, 2025

Identity

PubMed Central ID

  • PMC12340830

Digital Object Identifier (DOI)

  • 10.1101/2025.08.04.668444

PubMed ID

  • 40799582