Studies in porphyria. VII. Induction of uroporphyrinogen-I synthase and expression of the gene defect of acute intermittent porphyria in mitogen-stimulated human lymphocytes. Academic Article uri icon

Overview

abstract

  • A 50% reduction in the activity of uroporphyrinogen-I (URO) synthase in liver, erythrocytes, and cultured skin fibroblasts characterizes all patients with clinically active acute intermittent porphyria (AIP). The same enzyme defect has also been demonstrated in the erythrocytes and skin fibroblasts of completely latent gene carriers of this disorder and presumably exists in the liver as well. In this study, we examined whether or not the formation of URO-synthase is impaired in AIP cells using lymphocytes treated with mitogens or infected with Epstein-Barr virus. Both mitogens (phytohemagglutinin and pokeweed mitogen) and Epstein-Barr virus induced the synthesis of URO-synthase in lymphocytes, but the induction of URO-synthase in AIP lymphocytes was only 50% as compared with that in normal lymphocytes. The impaired induction of URO-synthase in AIP lymphocytes reflects a specific gene defect because AIP lymphocytes showed normal [(3)H] thymidine uptake into DNA, [(3)H] uridine uptake into RNA, and normal delta-aminolevulinic acid (ALA) synthase, ALA-dehydratase, catalase activities, and heme content. Utilizing the same methodology, the ferrochelatase deficiency of hereditary erythropoietic protoporphyria could also be identified. The K(m) of the induced URO-synthase in AIP cells was identical to that of the enzyme in normal cells. The induced URO-synthase of mitogen-treated AIP lymphocytes was not accompanied by a concurrent enhanced level of ALA-synthase. Moreover, the URO-synthase deficiency in lymphocytes from actively ill AIP patients was not different from the level of enzyme activity when they were in clinical remission, or when compared with the enzyme activity of cells from completely latent AIP gene carriers. The results of this study indicate that the URO-synthase deficiency in AIP may be the result of a gene mutation regulating the rate of synthesis of a normal enzyme rather than a mutation causing a structural abnormality of this enzyme protein.

publication date

  • February 1, 1978

Research

keywords

  • Ammonia-Lyases
  • Hydroxymethylbilane Synthase
  • Lymphocytes
  • Porphyrias

Identity

PubMed Central ID

  • PMC372561

Scopus Document Identifier

  • 0017894637

PubMed ID

  • 621286

Additional Document Info

volume

  • 61

issue

  • 2