Mouse mammary tumors express elevated levels of RNA encoding the murine homology of SKY, a putative receptor tyrosine kinase. Academic Article uri icon

Overview

abstract

  • To gain insight into the signal transduction pathways utilized by the Wnt-1-responsive mammary epithelial cell line C57MG, we screened for non-src family member tyrosine kinases expressed in these cells using a polymerase chain reaction-based technique. We identified five cDNA clones encoding receptor tyrosine kinases for which the ligand is known (fibroblast growth factor receptor, platelet-derived growth factor receptor, epithelial growth factor receptor, insulin receptor, and insulin-like growth factor receptor), two putative receptor tyrosine kinases for which the ligand remains to be identified (the products of ryk and the mouse klg homolog), and a novel tyrosine kinase. We cloned cDNAs encoding both the murine and human homologs of this kinase, the sequences of which were subsequently published under the names sky (Ohashi, K., Mizuno, K., Kuma, K., Miyata, T., and Nakamura, T. (1994) Oncogene 9, 699-705) and rse (Mark, M. R., Scadden, D. T., Wang, Z., Gu, Q., Goddard, A., and Godowski, P. J. (1994) J. Biol. Chem. 269, 10720-10728). Mouse sky RNA levels are abundant in mammary tumors derived from transgenic mice that express wnt-1, fgf-3, or both oncogenes in their mammary glands. However, little or no expression of sky is detected in mammary glands from virgin animals or in preneoplastic mammary glands from wnt-1 transgenic mice. Moreover, we find that the human homolog of sky is expressed at elevated levels when normal human mammary epithelial cells are rendered tumorigenic by the introduction of two viral oncogenes. Transient transfection of the human SKY cDNA into the quail fibrosarcoma cell line QT6 reveals that SKY is an active tyrosine kinase that augments the level of cellular phosphotyrosine. Introduction of murine Sky into RatB1a fibroblasts by retrovirus-mediated gene transfer results in morphological transformation, growth in soft agar, and the formation of tumors in nude mice. These data raise the possibility that the Sky tyrosine kinase is involved in the development and/or progression of mammary tumors.

publication date

  • March 24, 1995

Research

keywords

  • Gene Expression Regulation, Neoplastic
  • Mammary Neoplasms, Experimental
  • RNA, Messenger
  • Receptor Protein-Tyrosine Kinases

Identity

Scopus Document Identifier

  • 0028900572

PubMed ID

  • 7896835

Additional Document Info

volume

  • 270

issue

  • 12