Altered beta-adrenergic receptor-stimulated cAMP formation in cultured skin fibroblasts from Alzheimer donors.
Academic Article
Overview
abstract
An alteration in signal transduction systems in Alzheimer's disease would likely be of pathophysiological significance, because these steps are critical to normal brain function. Since dynamic processes are difficult to study in autopsied brain, the current studies utilized cultured skin fibroblasts. The beta-adrenergic-stimulated increase in cAMP was reduced approximately 80% in fibroblasts from Alzheimer's disease compared with age-matched controls. The deficit in Alzheimer fibroblasts in response to various adrenergic agonists paralleled their beta-adrenergic potency, and enhancement of cAMP accumulation by a non-adrenergic agonist, such as prostaglandin E1, was similar in Alzheimer and control fibroblasts. Diminished adenylate cyclase activity did not underlie these abnormalities, since direct stimulation of adenylate cyclase by forskolin elevated cAMP production equally in Alzheimer and control fibroblasts. Cholera toxin equally stimulated cAMP formation in Alzheimer and control fibroblasts. Moreover, cholera toxin partially reduced isoproterenol-induced cAMP deficit in Alzheimer fibroblasts. Pertussis toxin, on the other hand, did not alter the Alzheimer deficits. The results suggest either that the coupling of the GTP-binding protein(s) to the beta-adrenergic receptor is abnormal or that the sensitivity of receptor is altered with Alzheimer's disease. Further, any hypothesis about Alzheimer's disease must explain why a reduced beta-adrenergic-stimulated cAMP formation persists in tissue culture.